When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    A Boolean algebra can be interpreted either as a special kind of ring (a Boolean ring) or a special kind of distributive lattice (a Boolean lattice). Each interpretation is responsible for different distributive laws in the Boolean algebra. Similar structures without distributive laws are near-rings and near-fields instead of rings and division ...

  3. Boolean algebra (structure) - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebra_(structure)

    The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English mathematician. He introduced the algebraic system initially in a small pamphlet, The Mathematical Analysis of Logic, published in 1847 in response to an ongoing public controversy between Augustus De Morgan and William Hamilton, and later as a more substantial book, The Laws of Thought, published in 1854.

  4. Quantum logic - Wikipedia

    en.wikipedia.org/wiki/Quantum_logic

    Mathematically, quantum logic is formulated by weakening the distributive law for a Boolean algebra, resulting in an ortho­complemented lattice. Quantum-mechanical observables and states can be defined in terms of functions on or to the lattice, giving an alternate formalism for quantum computations.

  5. Boolean algebra - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebra

    A law of Boolean algebra is an identity such as x ∨ (y ∨ z) = (x ∨ y) ∨ z between two Boolean terms, where a Boolean term is defined as an expression built up from variables and the constants 0 and 1 using the operations ∧, ∨, and ¬. The concept can be extended to terms involving other Boolean operations such as ⊕, →, and ≡ ...

  6. Boolean algebras canonically defined - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebras...

    Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' [1] Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the ...

  7. Complete Boolean algebra - Wikipedia

    en.wikipedia.org/wiki/Complete_Boolean_algebra

    For a complete boolean algebra, both infinite distributive laws hold if and only if it is isomorphic to the powerset of some set. [citation needed] For a complete boolean algebra infinite de-Morgan's laws hold. A Boolean algebra is complete if and only if its Stone space of prime ideals is extremally disconnected.

  8. Distributive lattice - Wikipedia

    en.wikipedia.org/wiki/Distributive_lattice

    Every Heyting algebra is a distributive lattice. Especially this includes all locales and hence all open set lattices of topological spaces. Also note that Heyting algebras can be viewed as Lindenbaum algebras of intuitionistic logic, which makes them a special case of the first example. Every totally ordered set is a distributive lattice with ...

  9. Distributivity (order theory) - Wikipedia

    en.wikipedia.org/wiki/Distributivity_(order_theory)

    An element x is called a dual distributive element if ∀y,z: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). In a distributive lattice, every element is of course both distributive and dual distributive. In a non-distributive lattice, there may be elements that are distributive, but not dual distributive (and vice versa).