Search results
Results From The WOW.Com Content Network
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term.Two definitions of a monomial may be encountered: A monomial, also called a power product or primitive monomial, [1] is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. [2]
For example, given a = f(x) = a 0 x 0 + a 1 x 1 + ··· and b = g(x) = b 0 x 0 + b 1 x 1 + ···, the product ab is a specific value of W(x) = f(x)g(x). One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba ...
In topology, it is often denoted as S 1 because it is a one-dimensional unit n-sphere. [2] [note 1] If (x, y) is a point on the unit circle's circumference, then | x | and | y | are the lengths of the legs of a right triangle whose hypotenuse has length 1. Thus, by the Pythagorean theorem, x and y satisfy the equation + =
If only one root, say r 1, is real, then r 2 and r 3 are complex conjugates, which implies that r 2 – r 3 is a purely imaginary number, and thus that (r 2 – r 3) 2 is real and negative. On the other hand, r 1 – r 2 and r 1 – r 3 are complex conjugates, and their product is real and positive. [ 23 ]
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
One turn (corresponding to a cycle or revolution) is equal to 360°. With the invention of the metric system, based on powers of ten, there was an attempt to replace degrees by decimal "degrees" in France and nearby countries, [note 3] where the number in a right angle is equal to 100 gon with 400 gon in a full circle (1° = 10 ⁄ 9 gon).
In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation , named after Niels Henrik Abel who introduced it in 1826.
This should be distinguished from the names used for the number of variables, the arity, which are based on Latin distributive numbers, and end in -ary. For example, a degree two polynomial in two variables, such as + +, is called a "binary quadratic": binary due to two variables, quadratic due to degree two.