Search results
Results From The WOW.Com Content Network
In mathematics, the term undefined refers to a value, function, or other expression that cannot be assigned a meaning within a specific formal system. [ 1 ] Attempting to assign or use an undefined value within a particular formal system, may produce contradictory or meaningless results within that system.
The x-coordinates of the red circles are stationary points; the blue squares are inflection points.. In mathematics, a critical point is the argument of a function where the function derivative is zero (or undefined, as specified below).
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
The mean value theorem gives a relationship between values of the derivative and values of the original function. If f ( x ) is a real-valued function and a and b are numbers with a < b , then the mean value theorem says that under mild hypotheses, the slope between the two points ( a , f ( a )) and ( b , f ( b )) is equal to the slope of the ...
More generally, the differential or pushforward refers to the derivative of a map between smooth manifolds and the pushforward operations it defines. The differential is also used to define the dual concept of pullback. Stochastic calculus provides a notion of stochastic differential and an associated calculus for stochastic processes.
This is an accepted version of this page This is the latest accepted revision, reviewed on 9 January 2025. Look up undefined in Wiktionary, the free dictionary. Undefined may refer to: Mathematics Undefined (mathematics), with several related meanings Indeterminate form, in calculus Computing Undefined behavior, computer code whose behavior is not specified under certain conditions Undefined ...
A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}
If the domain of definition equals X, one often says that the partial function is a total function. In several areas of mathematics the term "function" refers to partial functions rather than to ordinary functions. This is typically the case when functions may be specified in a way that makes difficult or even impossible to determine their domain.