Search results
Results From The WOW.Com Content Network
The LMTD is a steady-state concept, and cannot be used in dynamic analyses. In particular, if the LMTD were to be applied on a transient in which, for a brief time, the temperature difference had different signs on the two sides of the exchanger, the argument to the logarithm function would be negative, which is not allowable.
By adding a correction factor, known as the activity (, the activity of the i th component) to the liquid phase fraction of a liquid mixture, some of the effects of the real solution can be accounted for. The activity of a real chemical is a function of the thermodynamic state of the system, i.e. temperature and pressure.
A fudge factor is an ad hoc quantity or element introduced into a calculation, formula or model in order to make it fit observations or expectations. Also known as a correction coefficient , which is defined by
That is, observed temperatures above 60 °F (or the base temperature used) typically correlate with a correction factor below "1", while temperatures below 60 °F correlate with a factor above "1". This concept lies in the basis for the kinetic theory of matter and thermal expansion of matter , which states as the temperature of a substance ...
This graph is called the "Van 't Hoff plot" and is widely used to estimate the enthalpy and entropy of a chemical reaction. From this plot, − Δ r H / R is the slope, and Δ r S / R is the intercept of the linear fit.
The only difference between the two forms of the expression is the quantity used for the activation energy: the former would have the unit joule/mole, which is common in chemistry, while the latter would have the unit joule and would be for one molecular reaction event, which is common in physics.
A more accurate correction factor can be obtained using Knudsen correction. When using nitrogen gas for core plug measurements, the Klinkenberg correction is usually necessary due to the so-called Klinkenberg gas slippage effect. This takes place when the pore space approaches the mean free path of the gas
Chilton–Colburn J-factor analogy (also known as the modified Reynolds analogy [1]) is a successful and widely used analogy between heat, momentum, and mass transfer.The basic mechanisms and mathematics of heat, mass, and momentum transport are essentially the same.