Ad
related to: write the reciprocal of 5 3/4 fraction answer
Search results
Results From The WOW.Com Content Network
The sum of the reciprocals of the pentatope numbers is 4 / 3 . Sylvester's sequence is an integer sequence in which each member of the sequence is the product of the previous members, plus one. The first few terms of the sequence are 2, 3, 7, 43, 1807 . The sum of the reciprocals of the numbers in Sylvester's sequence is 1.
For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution). Multiplying by a number is the same as dividing by its reciprocal and vice versa ...
Thus the fraction 3 / 4 can be used to represent the ratio 3:4 (the ratio of the part to the whole), and the division 3 ÷ 4 (three divided by four). We can also write negative fractions, which represent the opposite of a positive fraction. For example, if 1 / 2 represents a half-dollar profit, then − 1 / 2 represents ...
Every terminating decimal representation can be written as a decimal fraction, a fraction whose denominator is a power of 10 (e.g. 1.585 = 1585 / 1000 ); it may also be written as a ratio of the form k / 2 n ·5 m (e.g. 1.585 = 317 / 2 3 ·5 2 ).
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
The ratio of these two weights is 5.52/1.54 = 3.58. It is also observed that 1 gram of chlorine reacts with 1.19 g of iodine. This ratio of 1.19 obeys the law because it is a simple fraction (1/3) of 3.58. (This is because it corresponds to the formula ICl 3, which is one known compound of iodine and chlorine.) Similarly, hydrogen, carbon, and ...
Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. [5] For a prime p, the period of its reciprocal divides p − 1. [6] The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.
This is useful in solving such recurrences, since by using partial fraction decomposition we can write any proper rational function as a sum of factors of the form 1 / (ax + b) and expand these as geometric series, giving an explicit formula for the Taylor coefficients; this is the method of generating functions.