When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Odds - Wikipedia

    en.wikipedia.org/wiki/Odds

    In probability theory, odds provide a measure of the probability of a particular outcome. Odds are commonly used in gambling and statistics.For example for an event that is 40% probable, one could say that the odds are "2 in 5", "2 to 3 in favor", or "3 to 2 against".

  3. Odds algorithm - Wikipedia

    en.wikipedia.org/wiki/Odds_algorithm

    In decision theory, the odds algorithm (or Bruss algorithm) is a mathematical method for computing optimal strategies for a class of problems that belong to the domain of optimal stopping problems. Their solution follows from the odds strategy , and the importance of the odds strategy lies in its optimality, as explained below.

  4. Kelly criterion - Wikipedia

    en.wikipedia.org/wiki/Kelly_criterion

    Example of the optimal Kelly betting fraction, versus expected return of other fractional bets. In probability theory, the Kelly criterion (or Kelly strategy or Kelly bet) is a formula for sizing a sequence of bets by maximizing the long-term expected value of the logarithm of wealth, which is equivalent to maximizing the long-term expected geometric growth rate.

  5. Gambling and information theory - Wikipedia

    en.wikipedia.org/wiki/Gambling_and_information...

    Surprisal and evidence in bits, as logarithmic measures of probability and odds respectively. The logarithmic probability measure self-information or surprisal, [4] whose average is information entropy/uncertainty and whose average difference is KL-divergence, has applications to odds-analysis all by itself. Its two primary strengths are that ...

  6. Martingale (betting system) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(betting_system)

    In this example, the probability of losing the entire bankroll and being unable to continue the martingale is equal to the probability of 6 consecutive losses: (10/19) 6 = 2.1256%. The probability of winning is equal to 1 minus the probability of losing 6 times: 1 − (10/19) 6 = 97.8744%. The expected amount won is (1 × 0.978744) = 0.978744.

  7. Gambling mathematics - Wikipedia

    en.wikipedia.org/wiki/Gambling_mathematics

    The mathematics of gambling is a collection of probability applications encountered in games of chance and can get included in game theory.From a mathematical point of view, the games of chance are experiments generating various types of aleatory events, and it is possible to calculate by using the properties of probability on a finite space of possibilities.

  8. Mathematics of bookmaking - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_bookmaking

    E.g. £100 each-way fivefold accumulator with winners at Evens ( 1 ⁄ 4 odds a place), 11-8 ( 1 ⁄ 5 odds), 5-4 ( 1 ⁄ 4 odds), 1-2 (all up to win) and 3-1 ( 1 ⁄ 5 odds); total staked = £200 Note: 'All up to win' means there are insufficient participants in the event for place odds to be given (e.g. 4 or fewer runners in a horse race).

  9. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    Methods of probability theory also apply to descriptions of complex systems given only partial knowledge of their state, as in statistical mechanics or sequential estimation. A great discovery of twentieth-century physics was the probabilistic nature of physical phenomena at atomic scales, described in quantum mechanics .