Ads
related to: glucose 6 phosphate
Search results
Results From The WOW.Com Content Network
Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way.
D-glucose 6-phosphate + H 2 O = D-glucose + phosphate. During fasting, adequate levels of blood glucose are assured by glucose liberated from liver glycogen stores by glycogenolysis, as well as BY glucose generated by gluconeogenesis in both the liver, and, to a lesser extent, the kidneys. D-glucose 6-phosphate is the product of both these ...
It is an X-linked recessive disorder that results in defective glucose-6-phosphate dehydrogenase enzyme. [1] Glucose-6-phosphate dehydrogenase is an enzyme which protects red blood cells, which carry oxygen from the lungs to tissues throughout the body. A defect of the enzyme results in the premature breakdown of red blood cells.
Glucose-6-phosphate translocase is a transmembrane protein providing a selective channel between the endoplasmic reticulum lumen and the cytosol.The enzyme is made up of three separate transporting subunits referred to as G6PT1 (subunit 1), G6PT2 (subunit 2) and G6PT3 (subunit 3).
G6PD converts G6P into 6-phosphoglucono-δ-lactone and is the rate-limiting enzyme of the pentose phosphate pathway. Thus, regulation of G6PD has downstream consequences for the activity of the rest of the pentose phosphate pathway. Glucose-6-phosphate dehydrogenase is stimulated by its substrate G6P.
Glucose-6-phosphate Phytic acid. Sugar phosphates (sugars that have added or substituted phosphate groups) are often used in biological systems to store or transfer energy. They also form the backbone for DNA and RNA. Sugar phosphate backbone geometry is altered in the vicinity of the modified nucleotides. Examples include ...
Pentose phosphate pathway, which begins with the dehydrogenation of glucose-6-phosphate, the first intermediate to be produced by glycolysis, produces various pentose sugars, and NADPH for the synthesis of fatty acids and cholesterol. Glycogen synthesis also starts with glucose-6-phosphate at the beginning of the glycolytic pathway.
The G6P is then converted to 6-phosphogluconolactone in the presence of enzyme glucose-6-phosphate dehydrogenase (an oxido-reductase) with the presence of co-enzyme nicotinamide adenine dinucleotide phosphate (NADP +). which will be reduced to nicotinamide adenine dinucleotide phosphate hydrogen along with a free hydrogen atom H +.