Search results
Results From The WOW.Com Content Network
A sphere enclosed by its axis-aligned minimum bounding box (in 3 dimensions) In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set S in N dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie.
A series of geometric shapes enclosed by its minimum bounding rectangle. In computational geometry, the minimum bounding rectangle (MBR), also known as bounding box (BBOX) or envelope, is an expression of the maximum extents of a two-dimensional object (e.g. point, line, polygon) or set of objects within its x-y coordinate system; in other words min(x), max(x), min(y), max(y).
In a locally convex space (E, P) with topology given by a set P of seminorms, one can define for any p ∈ P a p-contraction as a map f such that there is some k p < 1 such that p(f(x) − f(y)) ≤ k p p(x − y).
The minimum bounding box of a regular tetrahedron. The minimal enclosing box of the regular tetrahedron is a cube, with side length 1/ √ 2 that of the tetrahedron; for instance, a regular tetrahedron with side length √ 2 fits into a unit cube, with the tetrahedron's vertices lying at the vertices (0,0,0), (0,1,1), (1,0,1) and (1,1,0) of the ...
If non-convex bounding volumes are required, an approach is to represent them as a union of a number of convex bounding volumes. Unfortunately, intersection tests become quickly more expensive as the bounding boxes become more sophisticated. A bounding box or minimum bounding box (MBB) is a cuboid, or in 2-D a rectangle, containing the object.
One of the most commonly used bounding volumes is an axis-aligned minimum bounding box. The axis-aligned minimum bounding box for a given set of data objects is easy to compute, needs only few bytes of storage, and robust intersection tests are easy to implement and extremely fast. There are several desired properties for a BVH that should be ...
Formulas for the Web Mercator are fundamentally the same as for the standard spherical Mercator, but before applying zoom, the "world coordinates" are adjusted such that the upper left corner is (0, 0) and the lower right corner is ( , ): [7] = ⌊ (+) ⌋ = ⌊ ( [ (+)]) ⌋ where is the longitude in radians and is geodetic latitude in radians.
The key feature of the BIH is the storage of 2 planes per node (as opposed to 1 for the kd tree and 6 for an axis aligned bounding box hierarchy), which allows for overlapping children (just like a BVH), but at the same time featuring an order on the children along one dimension/axis (as it is the case for kd trees).