Search results
Results From The WOW.Com Content Network
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
Strength of Materials (R.S. Khurmi) Principles of Physics (V. K. Mehta) Advanced Inorganic Chemistry (R. D. Madan) Mathematics Today for ICSE (O. P. Malhotra, S. K. Gupta, Anubhuti Gangal) Language of Chemistry or Chemical Equations (G. D. Tuli, P. L. Soni) Wren and Martin High School English Grammar & Composition
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.
The maximum stress criterion assumes that a material fails when the maximum principal stress in a material element exceeds the uniaxial tensile strength of the material. Alternatively, the material will fail if the minimum principal stress σ 3 {\displaystyle \sigma _{3}} is less than the uniaxial compressive strength of the material.
Concrete is a non-linear, non-elastic and brittle material. It is strong in compression and very weak in tension. It behaves non-linearly at all times. Because it has essentially zero strength in tension, it is almost always used as reinforced concrete, a composite material. It is a mixture of sand, aggregate, cement and water. It is placed in ...
The theoretical strength can also be approximated using the fracture work per unit area, which result in slightly different numbers. However, the above derivation and final approximation is a commonly used metric for evaluating the advantages of a material's mechanical properties.
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.