Search results
Results From The WOW.Com Content Network
A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.
The isPrime function was inaccurate, as range doesn't include the higher end, so e.g. if checking for primality of 9, it would try numbers from 2 to 2, and conclude it was prime. I've added 1 to the upper end of the range so that the isPrime function works, in case anyone else comes along and tries to use it.
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.
⎕CR 'PrimeNumbers' ⍝ Show APL user-function PrimeNumbers Primes ← PrimeNumbers N ⍝ Function takes one right arg N (e.g., show prime numbers for 1 ... int N) Primes ← (2 =+ ⌿ 0 = (⍳ N) ∘. |⍳ N) / ⍳ N ⍝ The Ken Iverson one-liner PrimeNumbers 100 ⍝ Show all prime numbers from 1 to 100 2 3 5 7 11 13 17 19 23 29 31 37 41 43 ...
Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.
However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all odd primes, even though it is rather inefficient.
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.