Search results
Results From The WOW.Com Content Network
The company was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf in New York City, originally as a company that developed a chatbot app targeted at teenagers. [2] The company was named after the U+1F917 珞 HUGGING FACE emoji. [2]
Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the second in their foundational series of GPT models. GPT-2 was pre-trained on a dataset of 8 million web pages. [ 2 ]
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.
Generative Pre-trained Transformer 4 (GPT-4) is a multimodal large language model trained and created by OpenAI and the fourth in its series of GPT foundation models. [1] It was launched on March 14, 2023, [ 1 ] and made publicly available via the paid chatbot product ChatGPT Plus , via OpenAI's API , and via the free chatbot Microsoft Copilot ...
GPT-4o ("o" for "omni") is a multilingual, multimodal generative pre-trained transformer developed by OpenAI and released in May 2024. [1] GPT-4o is free, but ChatGPT Plus subscribers have higher usage limits. [2] It can process and generate text, images and audio. [3]
High-level schematic diagram of BERT. It takes in a text, tokenizes it into a sequence of tokens, add in optional special tokens, and apply a Transformer encoder. The hidden states of the last layer can then be used as contextual word embeddings. BERT is an "encoder-only" transformer architecture. At a high level, BERT consists of 4 modules:
A chatbot is a software application or web interface that is designed to mimic human conversation through text or voice interactions. [1] [2] [3] Modern chatbots are typically online and use generative artificial intelligence systems that are capable of maintaining a conversation with a user in natural language and simulating the way a human would behave as a conversational partner.
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.