Search results
Results From The WOW.Com Content Network
In the C programming language, operations can be performed on a bit level using bitwise operators. Bitwise operations are contrasted by byte-level operations which characterize the bitwise operators' logical counterparts, the AND, OR, NOT operators. Instead of performing on individual bits, byte-level operators perform on strings of eight bits ...
In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits. It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor .
A bitwise operation operates on one or more bit patterns or binary numerals at the level of their individual bits.It is a fast, primitive action directly supported by the central processing unit (CPU), and is used to manipulate values for comparisons and calculations.
In computer science, a mask or bitmask is data that is used for bitwise operations, particularly in a bit field.Using a mask, multiple bits in a byte, nibble, word, etc. can be set either on or off, or inverted from on to off (or vice versa) in a single bitwise operation.
This is a list of operators in the C and C++ programming languages.. All listed operators are in C++ and lacking indication otherwise, in C as well. Some tables include a "In C" column that indicates whether an operator is also in C. Note that C does not support operator overloading.
In computer programming, a bitwise rotation, also known as a circular shift, is a bitwise operation that shifts all bits of its operand. Unlike an arithmetic shift , a circular shift does not preserve a number's sign bit or distinguish a floating-point number 's exponent from its significand .
In computer science, a logical shift is a bitwise operation that shifts all the bits of its operand. The two base variants are the logical left shift and the logical right shift . This is further modulated by the number of bit positions a given value shall be shifted, such as shift left by 1 or shift right by n .
Bit fields can be used to reduce memory consumption when a program requires a number of integer variables which always will have low values. For example, in many systems, storing an integer value requires two bytes (16-bits) of memory; sometimes the values to be stored actually need only one or two bits.