Search results
Results From The WOW.Com Content Network
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
More generally, we can talk about k-wise independence, for any k ≥ 2. The idea is similar: a set of random variables is k-wise independent if every subset of size k of those variables is independent. k-wise independence has been used in theoretical computer science, where it was used to prove a theorem about the problem MAXEkSAT.
Let X 1, X 2, ..., X n be independent, identically distributed normal random variables with mean μ and variance σ 2.. Then with respect to the parameter μ, one can show that ^ =, the sample mean, is a complete and sufficient statistic – it is all the information one can derive to estimate μ, and no more – and
Independent: Each outcome of the die roll will not affect the next one, which means the 10 variables are independent from each other. Identically distributed: Regardless of whether the die is fair or weighted, each roll will have the same probability of seeing each result as every other roll. In contrast, rolling 10 different dice, some of ...
Cross-variation assumptions. These assumptions involve the joint probability distributions of either the observations themselves or the random errors in a model. Simple models may include the assumption that observations or errors are statistically independent. Design-based assumptions.
In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability
Independent increments are a basic property of many stochastic processes and are often incorporated in their definition. The notion of independent increments and independent S-increments of random measures plays an important role in the characterization of Poisson point process and infinite divisibility.
In probability, weak dependence of random variables is a generalization of independence that is weaker than the concept of a martingale [citation needed].A (time) sequence of random variables is weakly dependent if distinct portions of the sequence have a covariance that asymptotically decreases to 0 as the blocks are further separated in time.