When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Zhoubi Suanjing - Wikipedia

    en.wikipedia.org/wiki/Zhoubi_Suanjing

    Each problem includes an answer and a corresponding arithmetic algorithm. It is an important source on early Chinese cosmology , glossing the ancient idea of a round heaven over a square earth ( 天 圆 地 方 , tiānyuán dìfāng ) as similar to the round parasol suspended over some ancient Chinese chariots [ 10 ] or a Chinese chessboard ...

  3. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity involving the cotangent and the cosecant also follows from the Pythagorean theorem.

  4. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  5. IM 67118 - Wikipedia

    en.wikipedia.org/wiki/IM_67118

    In the last part of the text, the solution is proved correct using the Pythagorean theorem. The steps of the solution are believed to represent cut-and-paste geometry operations involving a diagram from which, it has been suggested, ancient Mesopotamians might, at an earlier time, have derived the Pythagorean theorem.

  6. Spiral of Theodorus - Wikipedia

    en.wikipedia.org/wiki/Spiral_of_Theodorus

    The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.

  7. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Due to the Pythagorean theorem the number () has the simple geometric meanings shown in the diagram: For a point outside the circle () is the squared tangential distance | | of point to the circle . Points with equal power, isolines of Π ( P ) {\displaystyle \Pi (P)} , are circles concentric to circle c {\displaystyle c} .

  8. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Since no triangle can have two obtuse angles, γ is an acute angle and the solution γ = arcsin D is unique. If b < c, the angle γ may be acute: γ = arcsin D or obtuse: γ ′ = 180° − γ. The figure on right shows the point C, the side b and the angle γ as the first solution, and the point C ′, side b ′ and the angle γ ′ as the ...

  9. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    (For a non-unit sphere, the lengths are the subtended angles times the radius, and the formula still holds if a, b and c are reinterpreted as the subtended angles). As a special case, for C = ⁠ π / 2 ⁠, then cos C = 0, and one obtains the spherical analogue of the Pythagorean theorem: ⁡ = ⁡ ⁡