Search results
Results From The WOW.Com Content Network
In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. [1] [2]Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices.
In mathematics, a block matrix pseudoinverse is a formula for the pseudoinverse of a partitioned matrix. This is useful for decomposing or approximating many algorithms updating parameters in signal processing , which are based on the least squares method.
This formula simplifies significantly when the upper right block matrix B is the zero matrix. This formulation is useful when the matrices A and D have relatively simple inverse formulas (or pseudo inverses in the case where the blocks are not all square. In this special case, the block matrix inversion formula stated in full generality above ...
In mathematics, and in particular linear algebra, the Moore–Penrose inverse + of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]
A square matrix having a multiplicative inverse, that is, a matrix B such that AB = BA = I. Invertible matrices form the general linear group. Involutory matrix: A square matrix which is its own inverse, i.e., AA = I. Signature matrices, Householder matrices (Also known as 'reflection matrices' to reflect a point about a plane or line) have ...
In general, a square complex matrix A is similar to a block diagonal matrix = [] where each block J i is a square matrix of the form = []. So there exists an invertible matrix P such that P −1 AP = J is such that the only non-zero entries of J are on the diagonal and the superdiagonal.
Let B i be a (mn) × m block matrix defined as follows: = [] = B i consists of n block matrices of size m × m , stacked column-wise, and all these matrices are all-zero except for the i -th one, which is a m × m identity matrix I m .
Every symplectic matrix is invertible with the inverse matrix given by =. Furthermore, the product of two symplectic matrices is, again, a symplectic matrix. This gives the set of all symplectic matrices the structure of a group.