Search results
Results From The WOW.Com Content Network
In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic [1] and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calculated by integrating radiant flux (or power ) with respect to time .
EMR of lower energy ultraviolet or lower frequencies (i.e., near ultraviolet, visible light, infrared, microwaves, and radio waves) is non-ionizing because its photons do not individually have enough energy to ionize atoms or molecules or to break chemical bonds. The effect of non-ionizing radiation on chemical systems and living tissue is ...
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation.The propagation of radiation through a medium is affected by absorption, emission, and scattering processes.
A radiative zone is a layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction, rather than by convection. [1] Energy travels through the radiative zone in the form of electromagnetic radiation as photons .
(E is Energy; h is the Planck constant; c is the speed of light; λ is wavelength.) When an X-ray photon collides with an atom, the atom may absorb the energy of the photon and boost an electron to a higher orbital level, or if the photon is extremely energetic, it may knock an electron from the atom altogether, causing the atom to ionize.
In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.
Radiant heat panel for testing precisely quantified energy exposures at National Research Council, near Ottawa, Ontario, Canada. Thermal radiation plays a crucial role in human comfort, influencing perceived temperature sensation. Various technologies have been developed to enhance thermal comfort, including personal heating and cooling devices.
Energy of electromagnetic radiation. Radiant energy density: w e: joule per cubic metre J/m 3: M⋅L −1 ⋅T −2: Radiant energy per unit volume. Radiant flux: Φ e [nb 2] watt: W = J/s M⋅L 2 ⋅T −3: Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called ...