When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  3. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    An ellipse has two axes and two foci. Unlike most other elementary shapes, such as the circle and square, there is no algebraic equation to determine the perimeter of an ellipse. Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.

  4. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge.

  5. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    For example, on a triaxial ellipsoid, the meridional eccentricity is that of the ellipse formed by a section containing both the longest and the shortest axes (one of which will be the polar axis), and the equatorial eccentricity is the eccentricity of the ellipse formed by a section through the centre, perpendicular to the polar axis (i.e. in ...

  6. Distance of closest approach - Wikipedia

    en.wikipedia.org/wiki/Distance_of_closest_approach

    Constructing a plane containing the line joining the centers of the two ellipsoids, and finding the equations of the ellipses formed by the intersection of this plane and the ellipsoids. Determining the distance of closest approach of the ellipses; that is the distance between the centers of the ellipses when they are in point contact externally.

  7. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    One approach to calculating orbits (mainly used historically) is to use Kepler's equation: M = E − ϵ ⋅ sin ⁡ E {\displaystyle M=E-\epsilon \cdot \sin E} . where M is the mean anomaly , E is the eccentric anomaly , and ϵ {\displaystyle \epsilon } is the eccentricity .

  8. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...

  9. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    For elliptical orbits, a simple proof shows that ⁡ gives the projection angle of a perfect circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury (e = 0.2056), one must simply calculate the inverse sine to find the projection angle of 11.86 degrees. Then, tilting any circular object by that angle ...