Search results
Results From The WOW.Com Content Network
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
A parabola, a convex curve that is the graph of the convex function () = In geometry , a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes .
Equivalently, this is the graph of the bivariate quadratic equation = + +. If a > 0, the parabola opens upwards. If a < 0, the parabola opens downwards. The coefficient a controls the degree of curvature of the graph; a larger magnitude of a gives the graph a more closed (sharply curved) appearance.
The choosability (or list colorability or list chromatic number) ch(G) of a graph G is the least number k such that G is k-choosable. More generally, for a function f assigning a positive integer f ( v ) to each vertex v , a graph G is f -choosable (or f -list-colorable ) if it has a list coloring no matter how one assigns a list of f ( v ...
In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...
The graph of f is a concave up parabola, the critical point is the abscissa of the vertex, where the tangent line is horizontal, and the critical value is the ordinate of the vertex and may be represented by the intersection of this tangent line and the y-axis.
For illustration, consider the equation for a parabola, = + +, where a, b, c, x and y are all considered to be real. The set of points (x, y) in the 2D plane satisfying this equation trace out the graph of a parabola. Here, a, b and c are regarded as constants, which specify the parabola, while x and y are variables.