Search results
Results From The WOW.Com Content Network
The Rayleigh scattering model breaks down when the particle size becomes larger than around 10% of the wavelength of the incident radiation. In the case of particles with dimensions greater than this, Mie's scattering model can be used to find the intensity of the scattered radiation.
It is more common that scattering centers are grouped together; in such cases, radiation may scatter many times, in what is known as multiple scattering. [11] The main difference between the effects of single and multiple scattering is that single scattering can usually be treated as a random phenomenon, whereas multiple scattering, somewhat ...
Scattering from any spherical particles with arbitrary size parameter is explained by the Mie theory. Mie theory, also called Lorenz-Mie theory or Lorenz-Mie-Debye theory, is a complete analytical solution of Maxwell's equations for the scattering of electromagnetic radiation by spherical particles (Bohren and Huffman, 1998).
Rayleigh scattering of that light off oxygen and nitrogen molecules, and; the response of the human visual system. The strong wavelength dependence of the Rayleigh scattering (~λ −4) means that shorter wavelengths are scattered more strongly than longer wavelengths. This results in the indirect blue and violet light coming from all regions ...
Comparison between the three main scattering processes undergone by visible light Scattering process Particle type Particle size Resulting effect Rayleigh scattering: Air molecule (N 2 and O 2) < 1 nanometer: Sky blue hue Tyndall scattering: Colloidal particles in suspension: 50 nm to 1 μm: Blue scattered light Mie scattering: Larger air dust ...
The elastic light scattering phenomena called Rayleigh scattering, in which light retains its energy, was described in the 19th century. The intensity of Rayleigh scattering is about 10 −3 to 10 −4 compared to the intensity of the exciting source. [2] In 1908, another form of elastic scattering, called Mie scattering was discovered.
The dominant radiative scattering processes in the atmosphere are Rayleigh scattering and Mie scattering; they are elastic, meaning that a photon of light can be deviated from its path without being absorbed and without changing wavelength. Under an overcast sky, there is no direct sunlight, and all light results from diffused skylight radiation.
Here the orientation of polarization is defined as the difference in azimuth between the observed pointing and the solar azimuth. The angle of polarization (or polarization angle) is defined as the relative angle between a vector tangent to the meridian of the observed point, and an angle perpendicular to the scattering plane.