Search results
Results From The WOW.Com Content Network
Tarjan's strongly connected components algorithm is an algorithm in graph theory for finding the strongly connected components (SCCs) of a directed graph. It runs in linear time , matching the time bound for alternative methods including Kosaraju's algorithm and the path-based strong component algorithm .
In graph theory, Edmonds' algorithm or Chu–Liu/Edmonds' algorithm is an algorithm for finding a spanning arborescence of minimum weight (sometimes called an optimum branching) [1]. It is the directed analog of the minimum spanning tree problem.
The unification of two argument graphs is defined as the most general graph (or the computation thereof) that is consistent with (i.e. contains all of the information in) the inputs, if such a graph exists; efficient unification algorithms are known.
The residual graph represents the remaining capacity available in the network. Find the Shortest Path: Use a shortest path algorithm (e.g., Dijkstra's algorithm, Bellman-Ford algorithm) to find the shortest path from the source node to the sink node in the residual graph. Augment the Flow: Find the minimum capacity along the shortest path.
The basic form of the Bron–Kerbosch algorithm is a recursive backtracking algorithm that searches for all maximal cliques in a given graph G.More generally, given three disjoint sets of vertices R, P, and X, it finds the maximal cliques that include all of the vertices in R, some of the vertices in P, and none of the vertices in X.
Dijkstra's algorithm is usually the working principle behind link-state routing protocols. OSPF and IS-IS are the most common. Unlike Dijkstra's algorithm, the Bellman–Ford algorithm can be used on graphs with negative edge weights, as long as the graph contains no negative cycle reachable from the source vertex s. The presence of such cycles ...
FKT algorithm; Flood fill; Graph exploration algorithm; Matching (graph theory) Max flow min cut theorem; Maximum-cardinality search; Shortest path. Dijkstra's algorithm; Bellman–Ford algorithm; A* algorithm; Floyd–Warshall algorithm; Topological sorting. Pre-topological order
In graph theory, the blossom algorithm is an algorithm for constructing maximum matchings on graphs. The algorithm was developed by Jack Edmonds in 1961, [1] and published in 1965. [2] Given a general graph G = (V, E), the algorithm finds a matching M such that each vertex in V is incident with at most one edge in M and | M | is maximized. The ...