Search results
Results From The WOW.Com Content Network
The unified shader model uses the same hardware resources for both vertex and fragment processing. In the field of 3D computer graphics, the unified shader model (known in Direct3D 10 as "Shader Model 4.0") refers to a form of shader hardware in a graphical processing unit (GPU) where all of the shader stages in the rendering pipeline (geometry, vertex, pixel, etc.) have the same capabilities.
Download QR code; Print/export ... Name of GPU series Wonder Mach 3D Rage Rage Pro Rage 128 R100 ... Unified shader model: Direct3D — 5.0 6.0 7.0 8.1 9.0 11
In Direct3D 11, the concept of feature levels has been further expanded to run on most downlevel hardware including Direct3D 9 cards with WDDM drivers.. There are seven feature levels provided by D3D_FEATURE_LEVEL structure; levels 9_1, 9_2 and 9_3 (collectively known as Direct3D 10 Level 9) re-encapsulate various features of popular Direct3D 9 cards conforming to Shader Model 2.0, while ...
Download QR code; Print/export ... Shader Model 6.5 (GCN) or Shader Model 5.0; OpenCL: OpenCL 2.1 (GCN version) ... It is a dual GPU card. Press samples were shipped ...
Model – The marketing name for the processor, assigned by Nvidia. Launch – Date of release for the processor. Code name – The internal engineering codename for the processor (typically designated by an NVXY name and later GXY where X is the series number and Y is the schedule of the project for that generation).
The High-Level Shader Language [1] or High-Level Shading Language [2] (HLSL) is a proprietary shading language developed by Microsoft for the Direct3D 9 API to augment the shader assembly language, and went on to become the required shading language for the unified shader model of Direct3D 10 and higher.
It is a direct representation of the intermediate shader bytecode which is passed to the graphics driver for execution. The shader assembly language cannot be directly used to program unified Shader Model 4.0, 4.1, 5.0, and 5.1, although it retains its function as a representation of the intermediate bytecode for debug purposes. [6]
NVIDIA states that contrast ratios using Shader Model 3.0 can be as high as 65535:1 using 32-bit lighting precision. At first, HDRR was only possible on video cards capable of Shader-Model-3.0 effects, but software developers soon added compatibility for Shader Model 2.0. As a side note, when referred to as Shader Model 3.0 HDR, HDRR is really ...