Ad
related to: nonlinear asymptote calculator
Search results
Results From The WOW.Com Content Network
A sigmoid function is constrained by a pair of horizontal asymptotes as . A sigmoid function is convex for values less than a particular point, and it is concave for values greater than that point: in many of the examples here, that point is 0.
Asymptotes are used in procedures of curve sketching. An asymptote serves as a guide line to show the behavior of the curve towards infinity. [10] In order to get better approximations of the curve, curvilinear asymptotes have also been used [11] although the term asymptotic curve seems to be preferred. [12]
The Method of Moving Asymptotes (MMA) is an optimization algorithm developed by Krister Svanberg in the 1980s. It's primarily used for solving non-linear programming problems, particularly those related to structural design and topology optimization .
In those limits, the number of equations usually decreases, their order reduces, nonlinear equations can be replaced by linear ones, the initial system becomes averaged in a certain sense, and so on. All these idealizations, different as they may seem, increase the degree of symmetry of the mathematical model of the phenomenon under consideration.
The inverse function only produces numerical values in the set of real numbers between its two asymptotes, which are now vertical instead of horizontal like in the forward Gompertz function. Outside of the range defined by the vertical asymptotes, the inverse function requires computing the logarithm of negative numbers.
Asymptotic stability of fixed points of a non-linear system can often be established using the Hartman–Grobman theorem. Suppose that v is a C 1-vector field in R n which vanishes at a point p, v(p) = 0. Then the corresponding autonomous system ′ = has a constant solution =.
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
For many practical problems, the detailed Bode plots can be approximated with straight-line segments that are asymptotes of the precise response. The effect of each of the terms of a multiple element transfer function can be approximated by a set of straight lines on a Bode plot. This allows a graphical solution of the overall frequency ...