When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]

  3. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.

  4. Spreadsheet - Wikipedia

    en.wikipedia.org/wiki/Spreadsheet

    Use of named column variables x & y in Microsoft Excel. Formula for y=x 2 resembles Fortran, and Name Manager shows the definitions of x & y. In most implementations, a cell, or group of cells in a column or row, can be "named" enabling the user to refer to those cells by a name rather than by a grid reference.

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling data points there is one independent variable: , and two parameters, and :

  6. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    Then, "independent and identically distributed" implies that an element in the sequence is independent of the random variables that came before it. In this way, an i.i.d. sequence is different from a Markov sequence , where the probability distribution for the n th random variable is a function of the previous random variable in the sequence ...

  7. Probability-generating function - Wikipedia

    en.wikipedia.org/.../Probability-generating_function

    Probability generating functions are particularly useful for dealing with functions of independent random variables. For example: If , =,,, is a sequence of independent (and not necessarily identically distributed) random variables that take on natural-number values, and

  8. Difference in differences - Wikipedia

    en.wikipedia.org/wiki/Difference_in_differences

    The outcome (dependent) variable in both groups is measured at time 1, before either group has received the treatment (i.e., the independent or explanatory variable), represented by the points P 1 and S 1. The treatment group then receives or experiences the treatment and both groups are again measured at time 2.

  9. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    In the formula above we consider n observations of one dependent variable and p independent variables. Thus, Y i is the i th observation of the dependent variable, X ik is k th observation of the k th independent variable, j = 1, 2, ..., p. The values β j represent parameters to be estimated, and ε i is the i th independent identically ...