When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electron capture - Wikipedia

    en.wikipedia.org/wiki/Electron_capture

    Simple electron capture by itself results in a neutral atom, since the loss of the electron in the electron shell is balanced by a loss of positive nuclear charge. However, a positive atomic ion may result from further Auger electron emission. Electron capture is an example of weak interaction, one of the four fundamental forces.

  3. Positron emission - Wikipedia

    en.wikipedia.org/wiki/Positron_emission

    Nuclei which decay by positron emission may also decay by electron capture. For low-energy decays, electron capture is energetically favored by 2m e c 2 = 1.022 MeV, since the final state has an electron removed rather than a positron added. As the energy of the decay goes up, so does the branching fraction of positron emission.

  4. Beta decay - Wikipedia

    en.wikipedia.org/wiki/Beta_decay

    decay (positron emission) of a nucleus is allowed energetically, so too is electron capture allowed. This is a process during which a nucleus captures one of its atomic electrons, resulting in the emission of a neutrino: A Z X + e − → A Z−1 X′ + ν e. An example of electron capture is one of the decay modes of krypton-81 into bromine-81 ...

  5. Double electron capture - Wikipedia

    en.wikipedia.org/wiki/Double_electron_capture

    If the mass difference between the mother and daughter atoms is more than two masses of an electron (1.022 MeV), the energy released in the process is enough to allow another mode of decay, called electron capture with positron emission. It occurs along with double electron capture, their branching ratio depending on nuclear properties.

  6. Double beta decay - Wikipedia

    en.wikipedia.org/wiki/Double_beta_decay

    If the mass difference between the parent and daughter atoms is more than 1.022 MeV/c 2 (two electron masses), another decay is accessible, capture of one orbital electron and emission of one positron. When the mass difference is more than 2.044 MeV/c 2 (four electron masses), emission of two positrons is possible. These theoretical decay ...

  7. Atom - Wikipedia

    en.wikipedia.org/wiki/Atom

    The electron or positron emissions are called beta particles. Beta decay either increases or decreases the atomic number of the nucleus by one. Electron capture is more common than positron emission, because it requires less energy. In this type of decay, an electron is absorbed by the nucleus, rather than a positron emitted from the nucleus.

  8. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    An example is internal conversion, which results in an initial electron emission, and then often further characteristic X-rays and Auger electrons emissions, although the internal conversion process involves neither beta nor gamma decay. A neutrino is not emitted, and none of the electron(s) and photon(s) emitted originate in the nucleus, even ...

  9. Electron capture ionization - Wikipedia

    en.wikipedia.org/wiki/Electron_capture_ionization

    Resonance electron capture [3] is also known as nondissociative EC. The compound captures an electron to form a radical anion. [4] The energy of the electrons are about 0 eV. The electrons can be created in the Electron Ionization source with moderating gas such as H 2, CH 4, i-C 4 H 10, NH 3, N 2, and Ar. [5] After the ion captures the electron, the complex formed can stabilize during ...