Search results
Results From The WOW.Com Content Network
All nuclear explosions produce fission products, un-fissioned nuclear material, and weapon residues vaporized by the heat of the fireball. These materials are limited to the original mass of the device, but include radioisotopes with long lives. [3] When the nuclear fireball does not reach the ground, this is the only fallout produced.
A Faraday cage does not offer protection from the effects of EMP unless the mesh is designed to have holes no bigger than the smallest wavelength emitted from a nuclear explosion. Large nuclear weapons detonated at high altitudes also cause geomagnetically induced current in very long electrical conductors. The mechanism by which these ...
The last two effects travel close together, but the air blast goes much further, and it causes the most damage in a nuclear explosion by tumbling vehicles, toppling weak buildings, and throwing ...
Nuclear scientists and engineers often need to know where neutrons are in an apparatus, in what direction they are going, and how quickly they are moving. It is commonly used to determine the behavior of nuclear reactor cores and experimental or industrial neutron beams. Neutron transport is a type of radiative transport.
A nuclear explosion is an explosion that occurs as a result of the rapid release of energy from a high-speed nuclear reaction.The driving reaction may be nuclear fission or nuclear fusion or a multi-stage cascading combination of the two, though to date all fusion-based weapons have used a fission device to initiate fusion, and a pure fusion weapon remains a hypothetical device.
More than seventy years after the test, residual radiation at the site was about ten times higher than normal background radiation in the area. The amount of radioactive exposure received during a one-hour visit to the site is about half of the total radiation exposure which a U.S. adult receives on an average day from natural and medical sources.
As of today and for the next few hundred years or so, caesium-137 and strontium-90 continue to be the principal source of radiation in the zone of alienation around the Chernobyl nuclear power plant, and pose the greatest risk to health, owing to their approximately 30 year half-life and biological uptake.
All nuclear weapons up to about 10 kilotons in yield have prompt neutron radiation [2] as their furthest-reaching lethal component. For standard weapons above about 10 kilotons of yield, the lethal blast and thermal effects radius begins to exceed the lethal ionizing radiation radius.