Search results
Results From The WOW.Com Content Network
A* (pronounced "A-star") is a graph traversal and pathfinding algorithm that is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. [1] Given a weighted graph, a source node and a goal node, the algorithm finds the shortest path (with respect to the given weights) from source to goal.
LPA* maintains two estimates of the start distance g*(n) for each node: . g(n), the previously calculated g-value (start distance) as in A*; rhs(n), a lookahead value based on the g-values of the node's predecessors (the minimum of all g(n' ) + d(n' , n), where n' is a predecessor of n and d(x, y) is the cost of the edge connecting x and y)
For the simplest version of Theta*, the main loop is much the same as that of A*. The only difference is the _ function. Compared to A*, the parent of a node in Theta* does not have to be a neighbor of the node as long as there is a line-of-sight between the two nodes.
Flexible and fast read mapping program (twice as fast as BWA), achieves a mapping sensitivity comparable to Stampy. Internally uses a memory efficient index structure (hash table) to store positions of all 13-mers present in the reference genome. Mapping regions where pairwise alignments are required are dynamically determined for each read.
Any-angle path planning algorithms are pathfinding algorithms that search for a Euclidean shortest path between two points on a grid map while allowing the turns in the path to have any angle. The result is a path that cuts directly through open areas and has relatively few turns. [ 1 ]
function simple memory bounded A *-star (problem): path queue: set of nodes, ordered by f-cost; begin queue. insert (problem. root-node); while True do begin if queue. empty then return failure; //there is no solution that fits in the given memory node:= queue. begin (); // min-f-cost-node if problem. is-goal (node) then return success; s:= next-successor (node) if! problem. is-goal (s ...
A rapidly exploring random tree (RRT) is an algorithm designed to efficiently search nonconvex, high-dimensional spaces by randomly building a space-filling tree.The tree is constructed incrementally from samples drawn randomly from the search space and is inherently biased to grow towards large unsearched areas of the problem.
The algorithm is composed by two levels and relies on the assumption that a valid solution for the MAPF problem is composed by a set of solutions for the single agents. Conflict-Based Search: [ 12 ] this algorithm computes paths as when solving single-agent pathfinding problems, and then it adds constraints in an incremental way in order to ...