Search results
Results From The WOW.Com Content Network
The sign of the covariance of two random variables X and Y. In probability theory and statistics, covariance is a measure of the joint variability of two random variables. [1] The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables.
In probability theory and statistics, the covariance function describes how much two random variables change together (their covariance) with varying spatial or temporal separation. For a random field or stochastic process Z ( x ) on a domain D , a covariance function C ( x , y ) gives the covariance of the values of the random field at the two ...
When two or more random variables are defined on a probability space, it is useful to describe how they vary together; that is, it is useful to measure the relationship between the variables. A common measure of the relationship between two random variables is the covariance.
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
The definition of the RV-coefficient makes use of ideas [5] concerning the definition of scalar-valued quantities which are called the "variance" and "covariance" of vector-valued random variables. Note that standard usage is to have matrices for the variances and covariances of vector random variables.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
The covariance matrix (also called second central moment or variance-covariance matrix) of an random vector is an matrix whose (i,j) th element is the covariance between the i th and the j th random variables. The covariance matrix is the expected value, element by element, of the matrix computed as [ []] [ []], where the superscript T ...
Thus, distance correlation measures both linear and nonlinear association between two random variables or random vectors. This is in contrast to Pearson's correlation, which can only detect linear association between two random variables. Distance correlation can be used to perform a statistical test of dependence with a permutation test. One ...