Search results
Results From The WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Because a dalton, a unit commonly used to measure atomic mass, is exactly 1/12 of the mass of a carbon-12 atom, this definition of the mole entailed that the mass of one mole of a compound or element in grams was numerically equal to the average mass of one molecule or atom of the substance in daltons, and that the number of daltons in a gram ...
Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope.As a consequence, the mass of one mole of a chemical compound, in grams, is numerically equal (for all practical purposes) to the mass of one molecule or formula unit of the compound, in daltons, and the molar mass of an isotope in grams per mole is approximately equal to the mass number ...
The volume of gas increases proportionally to absolute temperature and decreases inversely proportionally to pressure, approximately according to the ideal gas law: = where: p is the pressure; V is the volume; n is the amount of substance of gas (moles) R is the gas constant, 8.314 J·K −1 mol −1
V is the volume of the gas; n is the amount of substance of the gas (measured in moles); k is a constant for a given temperature and pressure. This law describes how, under the same condition of temperature and pressure, equal volumes of all gases contain the same number of molecules. For comparing the same substance under two different sets of ...
V m = 10.7316 × 519.67 / 14.696 = 379.48 ft 3 /lbmol at 60 °F and 14.696 psi (or about 0.8366 ft 3 /gram mole) V m = 10.7316 × 519.67 / 14.730 = 378.61 ft 3 /lbmol at 60 °F and 14.73 psi; Technical literature can be confusing because many authors fail to explain whether they are using the ideal gas constant R, or the specific gas constant R s.
An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. [1] The ideal gas concept is useful because it obeys the ideal gas law , a simplified equation of state , and is amenable to analysis under statistical mechanics .
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase c {\displaystyle c} : [ 2 ]