When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of nonlinear ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_nonlinear_ordinary...

    Differential equations are prominent in many scientific areas. Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations.

  3. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    methods for second order ODEs. We said that all higher-order ODEs can be transformed to first-order ODEs of the form (1). While this is certainly true, it may not be the best way to proceed. In particular, Nyström methods work directly with second-order equations.

  4. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    Some ODEs can be solved explicitly in terms of known functions and integrals. When that is not possible, the equation for computing the Taylor series of the solutions may be useful. For applied problems, numerical methods for ordinary differential equations can supply an approximation of the solution.

  5. Homotopy analysis method - Wikipedia

    en.wikipedia.org/wiki/Homotopy_analysis_method

    Thus, it is applicable for not only weakly but also strongly nonlinear problems, going beyond some of the inherent limitations of the standard perturbation methods. Second, the HAM is a unified method for the Lyapunov artificial small parameter method, the delta expansion method, the Adomian decomposition method , [ 4 ] and the homotopy ...

  6. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem:

  7. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    Fehlberg, Erwin (1969) Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems. Vol. 315. National aeronautics and space administration. Fehlberg, Erwin (1969). "Klassische Runge-Kutta-Nystrom-Formeln funfter und siebenter Ordnung mit Schrittweiten-Kontrolle". Computing. 4: 93– 106.

  8. Differential-algebraic system of equations - Wikipedia

    en.wikipedia.org/wiki/Differential-algebraic...

    In practical terms, the distinction between DAEs and ODEs is often that the solution of a DAE system depends on the derivatives of the input signal and not just the signal itself as in the case of ODEs; [3] this issue is commonly encountered in nonlinear systems with hysteresis, [4] such as the Schmitt trigger. [5]

  9. Autonomous system (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Autonomous_system...

    The second-order autonomous equation = (, ′) is more difficult, but it can be solved [2] by introducing the new variable = and expressing the second derivative of via the chain rule as = = = so that the original equation becomes = (,) which is a first order equation containing no reference to the independent variable .