When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Also known as min-max scaling or min-max normalization, rescaling is the simplest method and consists in rescaling the range of features to scale the range in [0, 1] or [−1, 1]. Selecting the target range depends on the nature of the data. The general formula for a min-max of [0, 1] is given as: [3]

  3. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    For instance, a popular choice of feature scaling method is min-max normalization, where each feature is transformed to have the same range (typically [,] or [,]). This solves the problem of different features having vastly different scales, for example if one feature is measured in kilometers and another in nanometers.

  4. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging. In more complicated cases, normalization may refer to more sophisticated adjustments where the intention is to bring the entire probability distributions of adjusted values into alignment.

  5. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    There are a few methods of standardization, such as min-max, normalization by decimal scaling, Z-score. [52] Subtraction of mean and division by variance of each feature is usually used for SVM. [ 53 ]

  6. Calinski–Harabasz index - Wikipedia

    en.wikipedia.org/wiki/Calinski–Harabasz_index

    Given a data set of n points: {x 1, ..., x n}, and the assignment of these points to k clusters: {C 1, ..., C k}, the Calinski–Harabasz (CH) Index is defined as the ratio of the between-cluster separation (BCSS) to the within-cluster dispersion (WCSS), normalized by their number of degrees of freedom:

  7. Normalisation by evaluation - Wikipedia

    en.wikipedia.org/wiki/Normalisation_by_evaluation

    A term is first interpreted into a denotational model of the λ-term structure, and then a canonical (β-normal and η-long) representative is extracted by reifying the denotation. Such an essentially semantic, reduction-free, approach differs from the more traditional syntactic, reduction-based, description of normalisation as reductions in a ...

  8. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    Overall the algorithm is more efficient (in terms of the amount of data required) than the theoretically optimal max-dependency selection, yet produces a feature set with little pairwise redundancy. mRMR is an instance of a large class of filter methods which trade off between relevancy and redundancy in different ways. [34] [36]

  9. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    In the language of tropical analysis, the softmax is a deformation or "quantization" of arg max and arg min, corresponding to using the log semiring instead of the max-plus semiring (respectively min-plus semiring), and recovering the arg max or arg min by taking the limit is called "tropicalization" or "dequantization".