Search results
Results From The WOW.Com Content Network
Even with this proviso, the electrode potentials of lithium and sodium – and hence their positions in the electrochemical series – appear anomalous. The order of reactivity, as shown by the vigour of the reaction with water or the speed at which the metal surface tarnishes in air, appears to be Cs > K > Na > Li > alkaline earth metals,
Lithium is also used as a source for alpha particles, or helium nuclei. When 7 Li is bombarded by accelerated protons 8 Be is formed, which almost immediately undergoes fission to form two alpha particles. This feat, called "splitting the atom" at the time, was the first fully human-made nuclear reaction. It was produced by Cockroft and Walton ...
A lithium atom is an atom of the chemical element lithium. Stable lithium is composed of three electrons bound by the electromagnetic force to a nucleus containing three protons along with either three or four neutrons , depending on the isotope , held together by the strong force .
An atom (or ion) whose oxidation number increases in a redox reaction is said to be oxidized (and is called a reducing agent). It is accomplished by loss of one or more electrons. The atom whose oxidation number decreases gains (receives) one or more electrons and is said to be reduced. This relation can be remembered by the following mnemonics.
The electrochemical series, which consists of standard electrode potentials and is closely related to the reactivity series, was generated by measuring the difference in potential between the metal half-cell in a circuit with a standard hydrogen half-cell, connected by a salt bridge. The standard hydrogen half-cell: 2H + (aq) + 2e − → H 2 (g)
Naturally occurring lithium (3 Li) is composed of two stable isotopes, lithium-6 (6 Li) and lithium-7 (7 Li), with the latter being far more abundant on Earth. Both of the natural isotopes have an unexpectedly low nuclear binding energy per nucleon (5 332.3312(3) keV for 6 Li and 5 606.4401(6) keV for 7 Li) when compared with the adjacent lighter and heavier elements, helium (7 073.9156(4) keV ...
Lithium (lithium–iron disulfide) LiFeS 2: Li FeS 2: 1.8 1.5 1070 Expensive. Used in 'plus' or 'extra' batteries. 337 [47] Lithium (lithium–manganese dioxide) LiMnO 2: Li MnO 2: 3.0 830–1010 Expensive. Used only in high-drain devices or for long shelf-life due to very low rate of self-discharge. 'Lithium' alone usually refers to this type ...
The Reactivity Series is based on displacement reactions, and the Electrochemical Series is based on the electrode potential needed to produce a metal from electrolysis. The Reactivity Series is more commonly used in the UK, and the Electrochemical Series, from what I gather, is more commonly used in the US, and potassium is above lithium in ...