When.com Web Search

  1. Ad

    related to: matlab modular

Search results

  1. Results From The WOW.Com Content Network
  2. Modular programming - Wikipedia

    en.wikipedia.org/wiki/Modular_programming

    Modular programming is a software design technique that emphasizes separating the functionality of a program into independent, interchangeable modules, such that each contains everything necessary to execute only one aspect or "concern" of the desired functionality. A module interface expresses the elements that are provided and required by the ...

  3. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  4. Modular form - Wikipedia

    en.wikipedia.org/wiki/Modular_form

    A modular form for G of weight k is a function on H satisfying the above functional equation for all matrices in G, that is holomorphic on H and at all cusps of G. Again, modular forms that vanish at all cusps are called cusp forms for G. The C-vector spaces of modular and cusp forms of weight k are denoted M k (G) and S k (G), respectively.

  5. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is efficient to compute, even for very large integers. On the other hand, computing the modular discrete logarithm – that is, finding the exponent e when given b, c, and m – is believed to be difficult. This one-way function behavior makes modular exponentiation a candidate for use in cryptographic algorithms.

  6. Barrett reduction - Wikipedia

    en.wikipedia.org/wiki/Barrett_reduction

    In modular arithmetic, Barrett reduction is an algorithm designed to optimize the calculation of [1] without needing a fast division algorithm. It replaces divisions with multiplications, and can be used when n {\displaystyle n} is constant and a < n 2 {\displaystyle a<n^{2}} .

  7. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    The modular inverse of aR mod N is REDC((aR mod N) −1 (R 3 mod N)). Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies.

  8. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.

  9. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...