Search results
Results From The WOW.Com Content Network
In geometry, a star-shaped polygon is a polygonal region in the plane that is a star domain, that is, a polygon that contains a point from which the entire polygon boundary is visible. Formally, a polygon P is star-shaped if there exists a point z such that for each point p of P the segment z p ¯ {\displaystyle {\overline {zp}}} lies ...
A star domain (equivalently, a star-convex or star-shaped set) is not necessarily convex in the ordinary sense. An annulus is not a star domain.. In geometry, a set in the Euclidean space is called a star domain (or star-convex set, star-shaped set [1] or radially convex set) if there exists an such that for all , the line segment from to lies in .
As well as star-shaped polygonalizations, every non-collinear set of points has a polygonalization that is a monotone polygon. This means that, with respect to some straight line (which may be taken as the x {\displaystyle x} -axis) every perpendicular line to the reference line intersects the polygon in a single interval, or not at all.
A regular star polygon is a self-intersecting, equilateral, and equiangular polygon. A regular star polygon is denoted by its Schläfli symbol { p / q }, where p (the number of vertices) and q (the density ) are relatively prime (they share no factors) and where q ≥ 2.
Two classes of shape-based visual identification that are not done through geon representations, are those involved in: a) distinguishing between similar faces, and b) classifications that don’t have definite boundaries, such as that of bushes or a crumpled garment. Typically, such identifications are not viewpoint-invariant.
All convex polygons are star-shaped. Self-intersecting: the boundary of the polygon crosses itself. The term complex is sometimes used in contrast to simple, but this usage risks confusion with the idea of a complex polygon as one which exists in the complex Hilbert plane consisting of two complex dimensions. Star polygon: a polygon which self ...
Hence, the set of all these points is a star domain with respect to the optimum p. It is not clear whether the converse holds too. [clarification needed] Landsberger and Meilijson [3] define star-shaped utility functions. A weakly-increasing function u is called star-shaped w.r.t. a point t, if its average slope [u(x)-u(t)]/[x-t] is a weakly ...
This is the smallest star polygon that can be drawn in two forms, as irreducible fractions. The two heptagrams are sometimes called the heptagram (for {7/2}) and the great heptagram (for {7/3}). The previous one, the regular hexagram {6/2}, is a compound of two triangles. The smallest star polygon is the {5/2} pentagram.