Ads
related to: zener diode equivalent circuit calculator
Search results
Results From The WOW.Com Content Network
A Zener diode is a special type of diode designed to reliably allow current to flow "backwards" (inverted polarity) when a certain set reverse voltage, known as the Zener voltage, is reached. Zener diodes are manufactured with a great variety of Zener voltages and some are even variable.
The LTZ1000 is a high-precision, ultra-stable Zener diode voltage reference originally developed by Carl Nelson for Linear Technology (now Analog Devices). It consists of a Zener reference packaged along with an integrated heater and temperature sensor designed to hold the device at a constant temperature for improved stability. [1] [2]
The simplest TL431 regulator circuit is made by shorting the control input to the cathode. The resulting two-terminal network has a zener-like current–voltage characteristic, with a stable threshold voltage V REF ≈2.5 V, and low-frequency impedance of around 0.2 Ω. [24]
Zener diode based noise source. A noise generator is a circuit that produces electrical noise (i.e., a random signal). Noise generators are used to test signals for measuring noise figure, frequency response, and other parameters. Noise generators are also used for generating random numbers. [1]
In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunneling of electrons from the valence to the conduction band of a semiconductor , leading to numerous ...
Often, an equivalent circuit is sought that simplifies calculation, and more broadly, that is a simplest form of a more complex circuit in order to aid analysis. [1] In its most common form, an equivalent circuit is made up of linear, passive elements. However, more complex equivalent circuits are used that approximate the nonlinear behavior of ...
The diode, a nonlinear device, is in series with a linear circuit consisting of a resistor, R and a voltage source, V DD. The characteristic curve (curved line) , representing the current I through the diode for any given voltage across the diode V D , is an exponential curve.
This configuration is known as a constant-current diode, as it behaves much like a dual to the constant voltage diode (Zener diode) used in simple voltage sources. Due to the large variability in saturation current of JFETs, it is common to also include a source resistor (shown in the adjacent image) which allows the current to be tuned down to ...