Search results
Results From The WOW.Com Content Network
The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1. The eccentricity of a parabola is 1. The eccentricity of a hyperbola is greater than 1. The eccentricity of a pair of lines is . Two conic sections with the same eccentricity are similar.
The circle with center at Q and with radius R is called the osculating circle to the curve γ at the point P. If C is a regular space curve then the osculating circle is defined in a similar way, using the principal normal vector N. It lies in the osculating plane, the plane spanned by the tangent and principal normal vectors T and N at the ...
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
A circle is a shape consisting of ... the Pythagorean theorem can be used to calculate the radius of the unique circle that ... A circle is an ellipse with an ...
An ellipse (red) and its evolute (blue). The dots are the vertices of the ellipse, at the points of greatest and least curvature. For a semi-circle of radius a in the lower half-plane =. The circle of radius a has a radius of curvature equal to a.
While the circle has a relatively low maximum packing density, it does not have the lowest possible, even among centrally-symmetric convex shapes: the smoothed octagon has a packing density of about 0.902414, the smallest known for centrally-symmetric convex shapes and conjectured to be the smallest possible. [3]
The transformation sends the circle to an ellipse by stretching or shrinking the horizontal and vertical diameters to the major and minor axes of the ellipse. The square gets sent to a rectangle circumscribing the ellipse. The ratio of the area of the circle to the square is π /4, which means the ratio of the ellipse to the rectangle is also π /4
In geometry, the circumference (from Latin circumferens, meaning "carrying around") is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure.