When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    This method of generalizing the Pauli matrices refers to a generalization from a single 2-level system to multiple such systems.In particular, the generalized Pauli matrices for a group of qubits is just the set of matrices generated by all possible products of Pauli matrices on any of the qubits.

  4. Pauli group - Wikipedia

    en.wikipedia.org/wiki/Pauli_group

    The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. The Pauli group on n {\displaystyle n} qubits, G n {\displaystyle G_{n}} , is the group generated by the operators described above applied to each of n {\displaystyle n} qubits in the tensor product Hilbert space ( C 2 ) ⊗ n {\displaystyle ...

  5. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...

  6. Gell-Mann matrices - Wikipedia

    en.wikipedia.org/wiki/Gell-Mann_matrices

    This is so the embedded Pauli matrices corresponding to the three embedded subalgebras of SU(2) are conventionally normalized. In this three-dimensional matrix representation, the Cartan subalgebra is the set of linear combinations (with real coefficients) of the two matrices λ 3 {\displaystyle \lambda _{3}} and λ 8 {\displaystyle \lambda _{8 ...

  7. Wolfgang Pauli - Wikipedia

    en.wikipedia.org/wiki/Wolfgang_Pauli

    Pauli introduced the 2×2 Pauli matrices as a basis of spin operators, thus solving the nonrelativistic theory of spin. This work, including the Pauli equation , is sometimes said to have influenced Paul Dirac in his creation of the Dirac equation for the relativistic electron, though Dirac said that he invented these same matrices himself ...

  8. Yang–Mills equations - Wikipedia

    en.wikipedia.org/wiki/Yang–Mills_equations

    The dx 1 ⊗σ 3 coefficient of a BPST instanton on the (x 1,x 2)-slice of R 4 where σ 3 is the third Pauli matrix (top left). The dx 2 ⊗σ 3 coefficient (top right). These coefficients determine the restriction of the BPST instanton A with g=2, ρ=1,z=0 to this slice. The corresponding field strength centered around z=0 (bottom left).

  9. Walsh function - Wikipedia

    en.wikipedia.org/wiki/Walsh_function

    Each Rademacher operator acts on one particular fermion coordinate only, and there it is a Pauli matrix. It may be identified with the observable measuring spin component of that fermion along one of the axes {,,} in spin space. Thus, a Walsh operator measures the spin of a subset of fermions, each along its own axis.