Search results
Results From The WOW.Com Content Network
Grain boundary engineering involves manipulating the grain boundary structure and energy to enhance mechanical properties. By controlling the interfacial energy, it is possible to engineer materials with desirable grain boundary characteristics, such as increased interfacial area, higher grain boundary density, or specific grain boundary types ...
These grain boundary phases are thermodynamically stable and can be considered as quasi-two-dimensional phase, which may undergo to transition, similar to those of bulk phases. In this case structure and chemistry abrupt changes are possible at a critical value of a thermodynamic parameter like temperature or pressure. [13]
There are mainly two types of grain boundary sliding: Rachinger sliding, [2] and Lifshitz sliding. [3] Grain boundary sliding usually occurs as a combination of both types of sliding. Boundary shape often determines the rate and extent of grain boundary sliding. [4] Grain boundary sliding is a motion to prevent intergranular cracks from forming.
In metallurgy, materials science and structural geology, subgrain rotation recrystallization is recognized as an important mechanism for dynamic recrystallisation.It involves the rotation of initially low-angle sub-grain boundaries until the mismatch between the crystal lattices across the boundary is sufficient for them to be regarded as grain boundaries.
The absence of voids results from solid-state diffusive mass transfer, locally enhanced crystal plastic deformation, or solution and precipitation of a grain boundary fluid. [1] This mechanism operates at a low strain rate produced by neighbor switching. Grain boundary sliding is grain size- and temperature-dependent.
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
Nonmetallic impurities often aggregate at grain boundaries and have the ability to impact the strength of materials by changing the grain boundary energy. Rupert et al. [26] conducted first-principles simulations to study the impact of the addition of common nonmetallic impurities on Σ5 (310) grain boundary energy in Cu. They claimed that the ...
Grain growth has long been studied primarily by the examination of sectioned, polished and etched samples under the optical microscope.Although such methods enabled the collection of a great deal of empirical evidence, particularly with regard to factors such as temperature or composition, the lack of crystallographic information limited the development of an understanding of the fundamental ...