Search results
Results From The WOW.Com Content Network
In exterior algebra and geometric algebra the exterior product of two vectors is a bivector, ... The vector triple product is defined as the cross product of one ...
For example, the inner product of a polar vector and an axial vector resulting from the cross product in the triple product should result in a pseudoscalar, a result which is more obvious if the calculation is framed as the exterior product of a vector and bivector. They generalise to other dimensions; in particular bivectors can be used to ...
Like the geometric product of two vectors, this geometric product can be grouped into symmetric and antisymmetric parts, one of which is a pure k-vector. In analogy the antisymmetric part of this product can be called a generalized dot product, and is roughly speaking the dot product of a "plane" (bivector), and a vector.
The cross product and triple product in three dimensions each admit both geometric and algebraic interpretations. The cross product u × v can be interpreted as a vector which is perpendicular to both u and v and whose magnitude is equal to the area of the parallelogram determined by the two vectors.
Given a bivector r = r 1 + hr 2, the ellipse for which r 1 and r 2 are a pair of conjugate semi-diameters is called the directional ellipse of the bivector r. [4]: 436 In the standard linear representation of biquaternions as 2 × 2 complex matrices acting on the complex plane with basis {1, h},
In mathematics, a geometric algebra (also known as a Clifford algebra) is an algebra that can represent and manipulate geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors ...
A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...
The dot product takes in two vectors and returns a scalar, while the cross product [a] returns a pseudovector. Both of these have various significant geometric interpretations and are widely used in mathematics, physics, and engineering. The dyadic product takes in two vectors and returns a second order tensor called a dyadic in this context. A ...