Search results
Results From The WOW.Com Content Network
The set of all solutions to a 2-satisfiability instance has the structure of a median graph, in which an edge corresponds to the operation of flipping the values of a set of variables that are all constrained to be equal or unequal to each other. In particular, by following edges in this way one can get from any solution to any other solution.
The circuit on the left is satisfiable but the circuit on the right is not. In theoretical computer science, the circuit satisfiability problem (also known as CIRCUIT-SAT, CircuitSAT, CSAT, etc.) is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output true. [1]
Intractability even holds in the case known as #PP2DNF, where the variables are partitioned into two sets, with each clause containing one variable from each set. [8] By contrast, it is possible to tractably approximate the number of solutions of a disjunctive normal form formula using the Karp-Luby algorithm, which is an FPRAS for this problem ...
Since a XOR b XOR c evaluates to TRUE if and only if exactly 1 or 3 members of {a,b,c} are TRUE, each solution of the 1-in-3-SAT problem for a given CNF formula is also a solution of the XOR-3-SAT problem, and in turn each solution of XOR-3-SAT is a solution of 3-SAT; see the picture. As a consequence, for each CNF formula, it is possible to ...
A problem set, sometimes shortened as pset, [1] is a teaching tool used by many universities. Most courses in physics, math, engineering, chemistry, and computer science will give problem sets on a regular basis. [2] They can also appear in other subjects, such as economics.
Dominating set, a.k.a. domination number [3]: GT2 NP-complete special cases include the edge dominating set problem, i.e., the dominating set problem in line graphs. NP-complete variants include the connected dominating set problem and the maximum leaf spanning tree problem. [3]: ND2 Feedback vertex set [2] [3]: GT7
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...
The space of all candidate solutions, before any feasible points have been excluded, is called the feasible region, feasible set, search space, or solution space. [2] This is the set of all possible solutions that satisfy the problem's constraints. Constraint satisfaction is the process of finding a point in the feasible set.