Search results
Results From The WOW.Com Content Network
That is, x ∈ lim sup X n if and only if there exists a subsequence (X n k) of (X n) such that x ∈ X n k for all k. lim inf X n consists of elements of X which belong to X n for all except finitely many n (i.e., for cofinitely many n). That is, x ∈ lim inf X n if and only if there exists some m > 0 such that x ∈ X n for all n > m.
supremum = least upper bound. A lower bound of a subset of a partially ordered set (,) is an element of such that . for all .; A lower bound of is called an infimum (or greatest lower bound, or meet) of if
On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in X − x 0 which converges ...
If () for all x in an interval that contains c, except possibly c itself, and the limit of () and () both exist at c, then [5] () If lim x → c f ( x ) = lim x → c h ( x ) = L {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L} and f ( x ) ≤ g ( x ) ≤ h ( x ) {\displaystyle f(x)\leq g(x)\leq h(x)} for all x in an open interval that ...
is a function space.Its elements are the essentially bounded measurable functions. [2]More precisely, is defined based on an underlying measure space, (,,). Start with the set of all measurable functions from to which are essentially bounded, that is, bounded except on a set of measure zero.
Indeterminate form is a mathematical expression that can obtain any value depending on circumstances. In calculus, it is usually possible to compute the limit of the sum, difference, product, quotient or power of two functions by taking the corresponding combination of the separate limits of each respective function.
This sequence converges uniformly on S to the zero function and the limit, 0, is reached in a finite number of steps: for every x ≥ 0, if n > x, then f n (x) = 0. However, every function f n has integral −1. Contrary to Fatou's lemma, this value is strictly less than the integral of the limit (0).
The spectral radius of a finite graph is defined to be the spectral radius of its adjacency matrix.. This definition extends to the case of infinite graphs with bounded degrees of vertices (i.e. there exists some real number C such that the degree of every vertex of the graph is smaller than C).