When.com Web Search

  1. Ad

    related to: pauli matrices identities pdf class 12 biology

Search results

  1. Results From The WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Fierz identity - Wikipedia

    en.wikipedia.org/wiki/Fierz_identity

    The Fierz identities are also sometimes called the Fierz–Pauli–Kofink identities, as Pauli and Kofink described a general mechanism for producing such identities. There is a version of the Fierz identities for Dirac spinors and there is another version for Weyl spinors. And there are versions for other dimensions besides 3+1 dimensions.

  4. Pauli group - Wikipedia

    en.wikipedia.org/wiki/Pauli_group

    The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. The Pauli group on n {\displaystyle n} qubits, G n {\displaystyle G_{n}} , is the group generated by the operators described above applied to each of n {\displaystyle n} qubits in the tensor product Hilbert space ( C 2 ) ⊗ n {\displaystyle ...

  5. Special unitary group - Wikipedia

    en.wikipedia.org/wiki/Special_unitary_group

    The center of SU(n) is isomorphic to the cyclic group /, and is composed of the diagonal matrices ζ I for ζ an n th root of unity and I the n × n identity matrix. Its outer automorphism group for n ≥ 3 is Z / 2 Z , {\displaystyle \mathbb {Z} /2\mathbb {Z} ,} while the outer automorphism group of SU(2) is the trivial group .

  6. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    The collection of matrices defined above without the identity matrix are called the generalized Gell-Mann matrices, in dimension . [2] [3] The symbol ⊕ (utilized in the Cartan subalgebra above) means matrix direct sum. The generalized Gell-Mann matrices are Hermitian and traceless by

  7. Quaternion group - Wikipedia

    en.wikipedia.org/wiki/Quaternion_group

    It can be shown that a finite p-group with this property (every abelian subgroup is cyclic) is either cyclic or a generalized quaternion group as defined above. [12] Another characterization is that a finite p -group in which there is a unique subgroup of order p is either cyclic or a 2-group isomorphic to generalized quaternion group. [ 13 ]

  8. Clifford group - Wikipedia

    en.wikipedia.org/wiki/Clifford_group

    The Clifford group is defined as the group of unitaries that normalize the Pauli group: = {† =}. Under this definition, C n {\displaystyle \mathbf {C} _{n}} is infinite, since it contains all unitaries of the form e i θ I {\displaystyle e^{i\theta }I} for a real number θ {\displaystyle \theta } and the identity matrix I {\displaystyle I ...

  9. List of quantum logic gates - Wikipedia

    en.wikipedia.org/wiki/List_of_quantum_logic_gates

    As Pauli matrices are related to the generator of rotations, these rotation operators can be written as matrix exponentials with Pauli matrices in the argument. Any 2 × 2 {\displaystyle 2\times 2} unitary matrix in SU(2) can be written as a product (i.e. series circuit) of three rotation gates or less.