Search results
Results From The WOW.Com Content Network
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.
A pseudoscalar also results from any scalar product between a pseudovector and an ordinary vector. The prototypical example of a pseudoscalar is the scalar triple product, which can be written as the scalar product between one of the vectors in the triple product and the cross product between the two other vectors, where the latter is a ...
The torque or curl is then a normal vector field in this 3rd dimension. By contrast, geometric algebra in 2 dimensions defines these as a pseudoscalar field (a bivector), without requiring a 3rd dimension. Similarly, the scalar triple product is ad hoc, and can instead be expressed uniformly using the exterior product and the geometric product.
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.