Search results
Results From The WOW.Com Content Network
When a population of bacteria first enter a high-nutrient environment that allows growth, the cells need to adapt to their new environment. The first phase of growth is the lag phase, a period of slow growth when the cells are adapting to the high-nutrient environment and preparing for fast growth. The lag phase has high biosynthesis rates, as ...
LB medium bottle and LB agar plate Plate medium agar LB. Lysogeny broth (LB) is a nutritionally rich medium primarily used for the growth of bacteria. Its creator, Giuseppe Bertani, intended LB to stand for lysogeny broth, [1] but LB has also come to colloquially mean Luria broth, Lennox broth, life broth or Luria–Bertani medium. [2]
Nutrient agar is a general-purpose solid medium supporting growth of a wide range of non-fastidious organisms. It typically contains ( mass/volume ): [ 1 ] 0.5% peptone – this provides organic nitrogen
The cell wall of some Gram-positive bacteria can be completely dissolved by lysozymes which attack the bonds between N-acetylmuramic acid and N-acetylglucosamine. In other Gram-positive bacteria, such as Staphylococcus aureus, the walls are resistant to the action of lysozymes. [4] They have O-acetyl groups on carbon-6 of some muramic acid ...
The complete morphological diagram can be obtained by using two fields, density of bacteria and nutrient concentration, and taking into account that bacteria can increase motility in response to adverse external conditions. That means that diffusion in the medium and the response of bacteria are the relevant factors in this particular case.
Bioluminescent bacteria are most abundant in marine environments during spring blooms when there are high nutrient concentrations. These light-emitting organisms are found mainly in coastal waters near the outflow of rivers, such as the northern Adriatic Sea, Gulf of Trieste, northwestern part of the Caspian Sea, coast of Africa and many more. [25]
In these high resource environments, copiotrophs exhibit a “feast-and-famine” lifestyle. [4] They utilize the available nutrients in the environment rapidly resulting in nutrient depletion which forces them to starve. [4] This is possible through increasing their growth rate with nutrient uptake. [5]
At high concentrations, these blooms can be ecologically harmful to the aquatic species that cohabitate with the cyanobacteria. In addition to their odiferous presence, cyanobacterial blooms have been associated with lowered dissolved oxygen content, increased turbidity, and the accelerated release of nutrients from sediments.