Search results
Results From The WOW.Com Content Network
The proportional counter is a type of gaseous ionization detector device used to measure particles of ionizing radiation.The key feature is its ability to measure the energy of incident radiation, by producing a detector output pulse that is proportional to the radiation energy absorbed by the detector due to an ionizing event; hence the detector's name.
The Geiger–Müller tube and the proportional counter both use a phenomenon known as a Townsend avalanche to multiply the effect of the original ionizing event by means of a cascade effect whereby the free electrons are given sufficient energy by the electric field to release further electrons by ion impact.
The "dilution factor" is an expression which describes the ratio of the aliquot volume to the final volume. Dilution factor is a notation often used in commercial assays.
Geiger-Müller counter with dual counts/dose rate display measuring a "point source". The dose per count is known for this specific instrument by calibration. The count rates of cps and cpm are generally accepted and convenient practical rate measurements. They are not SI units, but are de facto radiological units of measure in widespread use.
The generation of discrete Townsend avalanches in a proportional counter. Proportional counters operate at a slightly higher voltage, selected such that discrete avalanches are generated. Each ion pair produces a single avalanche so that an output current pulse is generated which is proportional to the energy deposited by the radiation. This is ...
In chemistry, the law of mass action is the proposition that the rate of a chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. [1] It explains and predicts behaviors of solutions in dynamic equilibrium.
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]