Search results
Results From The WOW.Com Content Network
GM2A is a lipid transfer protein that stimulates the enzymatic processing of gangliosides, and also T-cell activation through lipid presentation. This protein binds molecules of ganglioside GM2, extracts them from membranes, and presents them to beta-hexosaminidase A for cleavage of N-acetyl-D-galactosamine and conversion to GM3.
GM2-gangliosidosis, AB variant is a rare, autosomal recessive metabolic disorder that causes progressive destruction of nerve cells in the brain and spinal cord. Mutations in the GM2A gene cause AB variant. The GM2A gene provides instructions for making a protein called the GM2 activator.
The name ganglioside was first applied by the German scientist Ernst Klenk in 1942 to lipids newly isolated from ganglion cells of the brain. [1] More than 60 gangliosides are known, which differ from each other mainly in the position and number of NANA residues.
The HEXA gene is a protein encoding gene that codes for the lysosomal enzyme beta-hexosaminidase. This enzyme, combined with the GM2 activator protein, is responsible for the breakdown of ganglioside GM2 within the lysosome. Defects in the HEXA gene, however, prevent this degradation, leading to a buildup of toxins in brain and spinal cord cells.
The secreted toxin attaches to the surface of the host mucosa cell by binding to GM1 gangliosides. GM1 consists of a sialic acid-containing oligosaccharide covalently attached to a ceramide lipid. The A1 subunit of this toxin will gain entry to intestinal epithelial cells with the assistance of the B subunit via the GM1 ganglioside receptor.
The GM2A gene provides instructions for making a protein called the GM2 activator. This protein is required for the normal function of beta-hexosaminidase A, a critical enzyme in the nervous system that breaks down a lipid called GM2 ganglioside. If mutations in both alleles at this locus disrupt the activity of the GM2
In organic chemistry, GM2 is a type of ganglioside. G refers to ganglioside, the M is for monosialic (as in it has one sialic acid), and 2 refers to the fact that it was the second monosialic ganglioside discovered. It is associated with GM2 gangliosidoses such as Tay–Sachs disease. [1]
Tay–Sachs disease occurs when hexosaminidase A loses its ability to function. People with Tay–Sachs disease are unable to remove the GalNAc residue from the G M2 ganglioside, and as a result, they end up storing 100 to 1000 times more G M2 gangliosides in the brain than the unaffected person. Over 100 different mutations have been ...