Ad
related to: opposite of generalisable in math sentence starters
Search results
Results From The WOW.Com Content Network
A sentence can be viewed as expressing a proposition, something that must be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values : as the free variables of a (general) formula can range over several values, the truth value of such a formula may vary.
The connection of generalization to specialization (or particularization) is reflected in the contrasting words hypernym and hyponym.A hypernym as a generic stands for a class or group of equally ranked items, such as the term tree which stands for equally ranked items such as peach and oak, and the term ship which stands for equally ranked items such as cruiser and steamer.
In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. [1] For example, the fact that "student John Smith is not lazy" is a counterexample to the generalization "students are lazy", and both a counterexample to, and disproof of, the universal quantification "all students are ...
In mathematics, proof by contrapositive, or proof by contraposition, is a rule of inference used in proofs, where one infers a conditional statement from its contrapositive. [15] In other words, the conclusion "if A , then B " is inferred by constructing a proof of the claim "if not B , then not A " instead.
In category theory, a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the opposite category C op.Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite ...
Without loss of generality (often abbreviated to WOLOG, WLOG or w.l.o.g.; less commonly stated as without any loss of generality or with no loss of generality) is a frequently used expression in mathematics.
A function (which in mathematics is generally defined as mapping the elements of one set A to elements of another B) is called "A onto B" (instead of "A to B" or "A into B") only if it is surjective; it may even be said that "f is onto" (i. e. surjective). Not translatable (without circumlocutions) to some languages other than English.
(In particular, the sentence explicitly specifies its domain of discourse to be the natural numbers, not, for example, the real numbers.) This particular example is true, because 5 is a natural number, and when we substitute 5 for n , we produce the true statement 5 × 5 = 25 {\displaystyle 5\times 5=25} .