When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    The isentropic stagnation state is the state a flowing fluid would attain if it underwent a reversible adiabatic deceleration to zero velocity. There are both actual and the isentropic stagnation states for a typical gas or vapor. Sometimes it is advantageous to make a distinction between the actual and the isentropic stagnation states.

  3. Isentropic analysis - Wikipedia

    en.wikipedia.org/wiki/Isentropic_analysis

    Isentropic analysis of the 300 kelvin isotrope and the weather satellite image of clouds during a blizzard in Colorado. In meteorology, isentropic analysis is a technique used to find the vertical and horizontal motion of airmasses during an adiabatic (i.e. non-heat-exchanging) process above the planetary boundary layer.

  4. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    For an isentropic flow of a perfect gas, several relations can be derived to define the pressure, density and temperature along a streamline. Note that energy can be exchanged with the flow in an isentropic transformation, as long as it doesn't happen as heat exchange. An example of such an exchange would be an isentropic expansion or ...

  5. Normal shock tables - Wikipedia

    en.wikipedia.org/wiki/Normal_shock_tables

    In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. [1] With a given upstream Mach number, the post-shock Mach number can be calculated along with the pressure, density, temperature, and stagnation pressure ratios.

  6. Thermodynamic databases for pure substances - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_databases...

    NASA Glenn ThermoBuild A web interface to generate tabulated thermodynamic data. Burcat's Thermodynamic Database Database for more than 3,000 chemical species. DIPPR The Design Institute for Physical Properties; DIPPR 801 Critically evaluated thermophysical property database useful for chemical process design and equilibrium calculations.

  7. Prandtl–Meyer function - Wikipedia

    en.wikipedia.org/wiki/Prandtl–Meyer_function

    For isentropic compression, ν ( M 2 ) = ν ( M 1 ) − θ {\displaystyle \nu (M_{2})=\nu (M_{1})-\theta \,} where, θ {\displaystyle \theta } is the absolute value of the angle through which the flow turns, M {\displaystyle M} is the flow Mach number and the suffixes "1" and "2" denote the initial and final conditions respectively.

  8. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    Point 3 labels the transition from isentropic to Fanno flow. Points 4 and 5 give the pre- and post-shock wave conditions, and point E is the exit from the duct. Figure 4 The H-S diagram is depicted for the conditions of Figure 3. Entropy is constant for isentropic flow, so the conditions at point 1 move down vertically to point 3.

  9. Prandtl–Meyer expansion fan - Wikipedia

    en.wikipedia.org/wiki/Prandtl–Meyer_expansion_fan

    Since the process is isentropic, the stagnation properties (e.g. the total pressure and total temperature) remain constant across the fan. The theory was described by Theodor Meyer on his thesis dissertation in 1908, along with his advisor Ludwig Prandtl, who had already discussed the problem a year before. [2] [3]