Ads
related to: tiling patterns shapes
Search results
Results From The WOW.Com Content Network
Covering a flat surface ("the plane") with some pattern of geometric shapes ("tiles"), with no overlaps or gaps, is called a tiling. The most familiar tilings, such as covering a floor with squares meeting edge-to-edge, are examples of periodic tilings. If a square tiling is shifted by the width of a tile, parallel to the sides of the tile, the ...
A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries. A periodic tiling has a repeating pattern.
Following Grünbaum and Shephard (section 1.3), a tiling is said to be regular if the symmetry group of the tiling acts transitively on the flags of the tiling, where a flag is a triple consisting of a mutually incident vertex, edge and tile of the tiling. This means that, for every pair of flags, there is a symmetry operation mapping the first ...
A tiling that cannot be constructed from a single primitive cell is called nonperiodic. If a given set of tiles allows only nonperiodic tilings, then this set of tiles is called aperiodic. [3] The tilings obtained from an aperiodic set of tiles are often called aperiodic tilings, though strictly speaking it is the tiles themselves that are ...
The last five chapters survey a variety of advanced topics in tiling theory: colored patterns and tilings, polygonal tilings, aperiodic tilings, Wang tiles, and tilings with unusual kinds of tiles. Each chapter open with an introduction to the topic, this is followed by the detailed material of the chapter, much previously unpublished, which is ...
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t {3,6} (as a truncated triangular tiling).