Search results
Results From The WOW.Com Content Network
If a positional numeral system is used, a natural way of multiplying numbers is taught in schools as long multiplication, sometimes called grade-school multiplication, sometimes called the Standard Algorithm: multiply the multiplicand by each digit of the multiplier and then add up all the properly shifted results.
In 493 AD, Victorius of Aquitaine wrote a 98-column multiplication table which gave (in Roman numerals) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144."
Numbers can count (3 apples), order (the 3rd apple), or measure (3.5 feet high); as the history of mathematics has progressed from counting on our fingers to modelling quantum mechanics, multiplication has been generalized to more complicated and abstract types of numbers, and to things that are not numbers (such as matrices) or do not look ...
A binary computer does exactly the same multiplication as decimal numbers do, but with binary numbers. In binary encoding each long number is multiplied by one digit (either 0 or 1), and that is much easier than in decimal, as the product by 0 or 1 is just 0 or the same number.
The grid method can be introduced by thinking about how to add up the number of points in a regular array, for example the number of squares of chocolate in a chocolate bar. As the size of the calculation becomes larger, it becomes easier to start counting in tens; and to represent the calculation as a box which can be sub-divided, rather than ...
For example, the square root of a number is the same as raising the number to the power of and the cube root of a number is the same as raising the number to the power of . Examples are 4 = 4 1 2 = 2 {\displaystyle {\sqrt {4}}=4^{\frac {1}{2}}=2} and 27 3 = 27 1 3 = 3 {\displaystyle {\sqrt[{3}]{27}}=27^{\frac {1}{3}}=3} .
Dividing 272 and 8, starting with the hundreds digit, 2 is not divisible by 8. Add 20 and 7 to get 27. The largest number that the divisor of 8 can be multiplied by without exceeding 27 is 3, so it is written under the tens column. Subtracting 24 (the product of 3 and 8) from 27 gives 3 as the remainder.
The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.