Search results
Results From The WOW.Com Content Network
When X n converges almost completely towards X then it also converges almost surely to X. In other words, if X n converges in probability to X sufficiently quickly (i.e. the above sequence of tail probabilities is summable for all ε > 0), then X n also converges almost surely to X. This is a direct implication from the Borel–Cantelli lemma.
This will obviously be also bounded and continuous, and therefore by the portmanteau lemma for sequence {X n} converging in distribution to X, we will have that E[g(X n)] → E[g(X)]. However the latter expression is equivalent to “E[ f ( X n , c )] → E[ f ( X , c )]”, and therefore we now know that ( X n , c ) converges in distribution ...
Convergence of random variables, for "almost sure convergence" With high probability; Cromwell's rule, which says that probabilities should almost never be set as zero or one; Degenerate distribution, for "almost surely constant" Infinite monkey theorem, a theorem using the aforementioned terms; List of mathematical jargon
In probability theory, Kolmogorov's Three-Series Theorem, named after Andrey Kolmogorov, gives a criterion for the almost sure convergence of an infinite series of random variables in terms of the convergence of three different series involving properties of their probability distributions.
In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non-negative pointwise-increasing measurable functions (), taking the integral and the supremum can be interchanged with the result being finite if either one is ...
In probability theory, Kolmogorov's two-series theorem is a result about the convergence of random series. It follows from Kolmogorov's inequality and is used in one proof of the strong law of large numbers .
The reason for the name is that if is an event in , then the theorem says that [] almost surely, i.e., the limit of the probabilities is 0 or 1. In plain language, if we are learning gradually all the information that determines the outcome of an event, then we will become gradually certain what the outcome will be.
This theorem follows from the fact that if X n converges in distribution to X and Y n converges in probability to a constant c, then the joint vector (X n, Y n) converges in distribution to (X, c) . Next we apply the continuous mapping theorem , recognizing the functions g ( x , y ) = x + y , g ( x , y ) = xy , and g ( x , y ) = x y −1 are ...